无人机的迅猛发展,使得无人机的反制技术也水涨船高,常见的有电子干扰、无人机识别对抗等方式。后者采用图像识别技术,通过在无人机摄像头的基础上加装AI高性能图像处理板,在算法的作用下,就具备无人机识别的功能,为无人机对抗创造条件。由于无人机飞行速度极快,因此针对于这样环境下的AI识别需要“与众不同”的图像处理板。我们都知道,当视频帧率越高时,视频越能够体现画面细节信息,而图像识别算法正是逐帧进行识别,因此,摄像头捕捉到的画面细节越多,识别的精度就会越高。SpeedDP作为一个AI训练平台。成都周界入侵AI智能视觉系统
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。成都高性能低功耗AI智能SpeedDP可以让AI更加聪明。
随着科技的不断进步,食品检测设备也在持续创新升级。光谱分析技术、色谱技术、生物传感技术等先进技术被广泛应用于食品检测领域,使得检测更加高效、准确、灵敏。例如,基于纳米技术的传感器能够检测出极其微量的有害物质,为食品安全提供了更为可靠的保障。同时,智能化、自动化的食品检测设备也在逐渐普及,不仅提高了检测效率,还降低了人为误差,进一步提升了检测的可靠性和稳定性。然而,当前食品检测设备的发展仍面临一些挑战。部分小型食品企业由于资金有限,难以配备先进的检测设备,导致检测能力不足;一些偏远地区的食品检测机构,也存在设备陈旧、更新换代慢等问题。此外,食品检测设备的标准体系有待进一步完善,不同设备之间的检测结果可比性还需加强。
“启明935A”系列芯片已经成功点亮,并完成各项功能性测试,达到车规级量产标准。启明935A是行业首颗基于Chiplet(芯粒/小芯片)异构集成范式的自动驾驶芯片,但并非单一芯片,而是一个家族系列。启明935HUBChiplet可以和不同数量的大熊星座AIChiplet互相搭配,再结合灵活的封装方式,快速形成不同性能等级的SoC芯片。它还支持高带宽的PBLink多芯互连,双芯双向带宽128GB/s,四芯双向带宽64GB/s。启明935A每颗芯片都支持比较大20路的1080p60摄像头输入,可应用于各类端侧AI部署。得益于大熊星座NPU天然支持Transformer结构,初步支持的模型有Yolo系列、ResNet50、PSPNet、PointNet++、TrafficSign_Retinanet、BevDet、miniCPM、Unet_ResNet50、PointPillars、PillarNest、M2track、BevFusion、PaliGemma、LLaMa-3B、8B等等。可以帮助进行算法训练的工具有哪些?
RK3588作为瑞芯微旗舰级芯片,工业级的算力受到了很多领域的青睐,但是由于前端相机的选择不同,并不是每块RK3588的图像处理板都可以直接拿来使用,需要的是根据相机接口和应用场景进行深度定制。成都慧视光电技术有限公司就有这样的快速集成定制的能力。作为拥有多年图像处理板开发经验的团队,成都慧视能够快速定制SDI、CVBS、CAMERALINK、USB、LVDS、DVP等丰富接口的RK3588系列图像处理板,并能够根据应用环境定制外壳、散热器等。数据标注很麻烦,所以需要AI介入。成都高性能低功耗AI智能
FPV识别算法用SpeedDP帮助提升精度。成都周界入侵AI智能视觉系统
要打造更加智能化的边海防无人机巡逻,则可以在光电吊舱中植入高性能的图像处理板,通过目标识别、检测算法的赋能,就能够让无人机实现目标识别检测、目标锁定跟踪等功能。为了进行有效结合,成都慧视开发了多块高性能的具备图像处理能力的光电吊舱。例如慧视VIZ-100T三轴三光目标定位吊舱,集10倍光学变倍可见光相机、640×512高分辨率红外相机、测程1.2km半导体激光测距机于一体,在边海防巡逻时能够昼夜成像工作。三轴高稳定精度平台框架能够有效保障画面的清晰稳定,并对目标点位的定位。吊舱内置我司自主开发的高性能AI图像处理板Viztra-HE030,该板卡采用瑞芯微旗舰级芯片RK3588,能够在算法的作用下实现高空目标识别检测、锁定跟踪人、车、船等目标,再通过和地面巡逻人员协调统一,就能够打造边海防的智能化体系。成都周界入侵AI智能视觉系统
文章来源地址: http://dzyqj.m.chanpin818.com/chuanganqisr/sjtxcgq/deta_25393252.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。