工业4.0就是无人作业的天下,各行各业都在进行无人化改造,农业领域也不例外。近年来随着政策的不断导向,我国已经成功建立了31个无人农业作业实验区。这些无人农业作业试验区覆盖水稻、玉米、小米等14种作物,累计投入智能农机和系统62万台(套),智能化作业面积达到1.7亿亩。综合抽样统计,作业效率提升60%、人工减少50%、土地利用率在95%以上。这些无人农业区利用无人机、无人车进行作物的播撒、浇灌、施肥等一系列操作,而无人设备要想实现这些功能要么是人工的远程精细操控,要么就是靠图像处理来实现完全的自动化。后者通过在无人设备上加装高性能的AI图像处理板,这些图像处理板在算法的赋能下,能够实现精细的目标识别和检测,例如无人机,在无人机上安装慧视光电推出的微型双光吊舱,吊舱内置图像处理板,无人机在起飞后能够自动识别哪些是作物哪些是其他物体。AI可以进行快速的海量图像数据的标注。成都人工智能AI智能监控
![成都人工智能AI智能监控,AI智能](https://tyunfile.71360.com/WaterMark/UploadFile/huishigd/637657722854460686/1732062.png)
近年来,国内外从事图像视频识别的公司明显增加,谷歌、Facebook、微软、旷视科技、图普科技、格灵深瞳等国内外企业重点集中在人脸识别、智能安防和智能驾驶等领域进行技术研发与产品设计。对于整个人工智能行业来说,目前,包括安防、金融、工业、医疗、教育等领域对AI技术的需求极大,高精度AI数据交付在助力AI产业场景化落地的同时,不仅带来了更好的用户体验,也进一步加快了智能化时代的到来,带动算力、算法等领域的振兴。在各方的努力下,中国AI市场将从局部的发展向整体的上升发展,行业前景一片向好。成都智慧工地AI智能智慧眼人工智能是一个宽泛的概念,它赋予机器模仿人类行为的能力。
![成都人工智能AI智能监控,AI智能](https://tyunfile.71360.com/WaterMark/UploadFile/huishigd/637673219607485992/2445981.png)
机器视觉具有定位、识别、测量与检测四大功能,在工业领域中,机器视觉可以快速、准确地获取大量信息,并且易于自动处理,因此在质量检测方面有着广泛应用。而AI图像处理板只是实现这些功能的关键传感器。目前,国内的机器视觉领域已经形成了庞大的产业链,从以镜头、工业相机、图像捕捉与处理系统等软硬件研发制造组成的上游环节,到智能化机器视觉集成组装为主的中游环节,都非常成熟。AI的不断发展,为机器视觉不断拓展应用场景,而慧视AI图像处理板的高性能正好成为该领域的融洽解决方案,相信在不远的将来,会有越来越多的行业知道AI图像处理板将为他们带来巨大的便利。
在智慧林河长制的建设中,无人机吊舱很重要,无人机吊舱可以内置图像处理传感器,进行高空目标识别、检测、锁定跟踪等功能。慧视光电开发的VIZ-100T三轴三光目标定位吊舱集成了10倍光学变倍可见光相机,640×512高分辨率红外相机,测程1.2km半导体激光测距机,以及三轴高稳定精度平台框架,能够实现昼夜工作,可远距离采集林、河图像,对可疑点位进行定位,然后实时输出1080P全高清可见光、红外视频。通过搭载慧视光电的无人机吊舱,能够很好地辅助有关单位进行林河维护。人工智能和机器学习在建筑领域的优势之一是能够自动执行某些任务。
![成都人工智能AI智能监控,AI智能](https://img01.71360.com/w3/k4743q/20240814/d14a4f3553b821fe5ed0072dece59d00.jpg)
虽然目前AI还没有那么让我们满意,但是在许多领域,当前的AI发展程度已经完全能够替代人工,胜任一些工作,图像标注就是其中之一。在人工智能、大数据分析、自动驾驶等行业都需要进行大量的图像标注工作,这些相关企业要么自己搭建团队,要么寻找外面的公司,于是就产生了大量的图像标注师岗位,这些岗位薪酬大都在4-6K之间,随着岗位数量的增多,成本也不断增加。对于专业的图像标注公司而言,有着源源不断的任务,那么这些图像标注师几乎不可能出现空挡时间,而对于有图像标注需求,但是这些需求并不持久、或者说断断续续,那么在这个空隙时间内,图像标注师就是一个闲职,产生的成本将是一个负担。AI的三大基石:数据、算力和算法。成都智慧交通AI智能监控
SpeedDP图像标注操作流程很简便。成都人工智能AI智能监控
目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力成都人工智能AI智能监控
文章来源地址: http://dzyqj.m.chanpin818.com/chuanganqisr/sjtxcgq/deta_22895216.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。