2)熔体与熔断器额定电流的确定熔体额定电流大小与负载大小、负载性质有关。对于负载平稳、无冲击电流,如一般照明电路、电热电路可按负载电流大小来确定熔体的额定电流。对于有冲击电流的电动机负载,为达到短路保护目的,又保证电动机正常起动,对笼型感应电动机其熔断器熔体的额定电流为:单台电动机INP=(~)INM(1-6)式中,INP为熔体额定电流(A);INM为电动机额定电流(A)。多台电动机共用一个熔断器保护INP=(~)INMmax+∑INM(1-7)式中,INMmax为容量大一台电动机的额定电流(A);∑INM为其余各台电动机额定电流之和(A)。在式(1-6)与式(1-7)中,对于轻载起动及起动时间较短时,式中系数取;重载起动及起动时间较长时,式中系数取。熔断器的额定电流大于或等于熔体额定电流。3)校核熔断器的保护特性对上述选定的熔断器类型及熔体额定电流,还须校核该熔断器的保护特性曲线是否与保护对象的过载特性有良好的配合,使在整个范围内获得可靠的保护。同时,熔断器的极限分断能力应大于或等于所保护电路可能出现的短路电流值,这样才能得到可靠的短路保护。4)熔断器上、下级的配合为满足选择性保护的要求,应注意熔断器上下级之间的配合。
(1)熔断器的安秒特性熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。每一熔体都有一小熔化电流。相应于不同的温度,小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的小熔断电流与熔体的额定电流之比为小熔化系数,常用熔体的熔化系数大于,也就是说额定电流为10A的熔体在电流。熔断电流与熔断时间之间的关系如表1-2所示。从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。(2)熔断器的选择主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。
文章来源地址: http://dzyqj.m.chanpin818.com/bhqj/zhfrdq/deta_18002354.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。